TDA Progress Report 42-84

October—December 1985

The Effect of the Dynamic Wet Troposphere on

VLBI Measurements

R. N. Treuhaft and G. E. Lanyi

Tracking Systems and Applications Section

Calculations using a statistical model of water vapor fluctuations yield the effect of
the dynamic wet troposphere on Very Long Baseline Interferometry (VLBI) measure-
ments. The statistical model arises from two primary assumptions: (1) the spatial struc-
ture of refractivity fluctuations can be closely approximated by elementary (Kolmo-
gorov) turbulence theory, and (2) temporal fluctuations are caused by spatial patterns
which are moved over a site by the wind. The consequences of these assumptions are
outlined for the VLBI delay and delay rate observables. For example, wet troposphere
induced rms delays for Deep Space Network (DSN} VLBI ar 20-deg elevation are about
3 cm of delay per observation, which is smaller, on the average, than other known error
sources in the current DSN VLBI data set. At 20-deg elevation for 200-s time intervals,
water vapor induces approximately 1.5 X 10-13 sfs in the Allan standard deviation of
interferometric delay, which is a measure of the delay rate observable error. In contrast to
the delay error, the delay rate measurement ervor is dominated by water vapor fluctua-
tions. Water vapor-induced VLBI parameter errors and correlations are calculated. For the
DSN, baseline length parameter errors due to water vapor fluctuations are in the range of
3--5 ecm. The above physical assumptions also legd to a method for including the water
vapor fluctuations in the parameter estimation procedure, which is used to extract base-
line and source information from the VLBI observables.

l. Introduction

Very Long Baseline Interferometry (VLBI) measures the
differential phase of an electromagnetic wave between two
antennas on the Earth’s surface. Typically the waves originate
from compact extragalactic radio sources, such as quasars. The
inferred group delay, which is the primary VLBI observable,
reflects the distance between the two antennas as well as the
angle between the vector connecting the antennas and the
vector pointing to the radio source (Refs.1, 2, and 3). In

establishing a radio reference frame of radio source and
baseline coordinates for navigation, delays other than the
geometric delay are regarded as errors in the VLBI measure-
ment. The presence of atmospheric water vapor along the
lines of sight from each antenna to the source will affect the
index of refraction of the traversed medium, and will therefore
corrupt the geometric delay measurement (Ref. 4). The rate
of change of the phase delay over few-minute time scales,
which is the other principal observable of VLBI, will also be
affected by water vapor (Ref. 5).



Parameters estimated from the group delay and phase delay
rate observables will in turn suffer errors due to the fluctuating
water vapor, or wet troposphere. Typical estimated parameters
include baseline length, baseline orientation radio source posi-
tions, clock offsets, and zenith troposphere delays (Refs. 6
and 7). In most intercontinental VLBI data reduction, zenith
troposphere delay parameters are statistically estimated. This
technique essentially accounts for a spatially and temporally
average troposphere, for each station, for the time over which
the zenith parameter is estimated. The wet troposphere
fluctuations around these averages are the dominant tropo-
spheric errors, which map to errors in VLBI astrometric and
geodetic parameters.

When centimeter-level VLBI observable accuracies are
required, the deviations from a temporally and spatially con-
stant wet troposphere must be considered. This article therefore
concentrates on the fluctuations in the wet troposphere delay,
which cannot be removed as an error source by the VLBI
zenith parameter estimation. While the external calibration
technique of using water vapor radiometers (WVRs) (Ref. 8)
can largely remove the water vapor-induced radiometric error,
understanding the character and effect of the fluctuating wet
delay is important. Such an understanding will help to evaluate
errors in data which are not accompanied by WVR measure-
ments, which constitute almost all of the DSN VLBI data set
as well as most VLBI data taken at other institutions. Due to
the low elevation limit of 20 deg for current WVRs, direct,
external calibration of the low elevation angle observations
necessary in intercontinental VLBI will remain impossible. The
analysis of such observations will benefit from a statistical
description of tropospheric fluctuations at low elevations. This
report is also motivated by the need to assess how WVRs can
be used to the best advantage when they are available.

We quantify the effect of the wet troposphere by first
describing a statistical model of spatial and temporal tropo-
spheric fluctuations in Section IL. In Section IIT the magnitude
of the effect indicated by the statistical model on the VLBI
delay and delay rate observables is explored. Evidence of the
effects of tropospheric fluctuation from the DSN VLBI data
set is also shown. Section IV describes a general procedure for
calculating the average VLBI parameter errors induced by the
wet troposphere. Errors induced in the baseline length param-
eter are derived as an example of the general error calculation.
Section IV also outlines a method for including the statistical
description of the troposphere in the VLBI estimation proce-
dure to obtain improved parameter estimates and parameter
covariances. Comparisons of model results with data and other
calculations are shown in Section V on model validation. In
Section VI, we present conclusions and plans for future
experimental and analytical approaches to the problem of wet
delay fluctuations.

Il. A Statistical Model of Water Vapor
Fluctuations

There are two principal assumptions in the statistical model
developed below: (1) the spatial structure of index of refrac-
tion fluctuations can be closely approximated by elementary
(Kolmogorov) turbulence theory, and (2) temporal fluctua-
tions are caused by spatial patterns which are moved over a
site by the wind. To simplify model calculations, we will
further assume that the water vapor spatial structure as well as
the wind vector is independent of height up to an effective
height to be discussed at the end of this section, Unless other-
wise noted, we will also assume that this finite slab of atmo-
spheric water vapor moves across a flat Earth, The model
will be described below, and the results of the calculations
will be compared to some of the existing data in Section V.

In describing the spatial statistics of the wet troposphere,
we will frequently use a quantity called the structure function.
For a random function f(?), where Tt isa vector in space, the
structure function for a displacement vector R is defined as
(Ref. 9):

D5, R) = (AT + R =) ®

where the <) brackets mean ensemble average. The fundamen-
tal randomly ‘igrying function to be considered will be the
refractivity n(¥) as a function of the spatial coordinate™.!
Following Ref. 9, we will assume that its structure function is

- + . .-> .
homogen_gous and isotropic, that is, that Dn(r,f){) is a func-
tion of |[R| = R only, and that it has the form

D,®) = ((n(x +R)-n(1)?) = CR¥ @)

where C in Eq. (2) characterizes the ensemble or the “rocki-
ness” of the spatial inhomogeneity. In most of our applica-
tions, we assume that C does not vary with T or R. The con-
sequences of this assumption will be discussed in Section V. It
will be shown in the next section that an average C can be
determined from WVR data or from the VLBI data itself.
Equation (2) is the principal assumption of Kolmogorov turbu-
lence, which is generally derived from dimensional considera-
tions (Refs. 9 and 10). For the refractivity function n(?),
ensemble averaging means considering the behavior of this
function for a set of possible tropospheric spatial patterns.

An important random function in calculations which follow
is the delay experienced by an electromagnetic wave as it passes
through the turbulent atmosphere,

1Throughout this article, refractivity is represented by n (refractivity =
index of refraction —1), Note that # in the literature is more commonly
used for the index of refraction.
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The vector T is along the direction described by the elevation
and azimuth 8 and ¢ with vertical projection z. The coordinate
X represents an observation site on the surface of Earth, and 4
is the effective height of the wet troposphere. The ensemble
averaged, squared difference between the delay for two
antennas separated by a vector 3 on the Earth’s surface is the
structure function of the delay

D 4 ,(0) = ((rp o (X + ) =Ty (XN 3)

where each antenna is looking along a ray with elevation @
and azimuth ¢. The expression for D, o ,,(0) in terms of D, (R)
can be calculated by integrating through the finite atmosphere
the time delay of a signal as it approaches Earth. Extending
the derivation of Ref. 9 yields
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In Eq. (4), & is taken to be the effective height of the wet tro-
posphere. Equation (4) is the general expression for the struc-
ture function of signals arriving at antennas separated by a dis-
tance p. The azimuth ¢ is relative to the line connecting the
two antennas. Equation (4) is derived in Appendix A.

We have numerically integrated Eq. (4) as a function of p
for two geometrical cases: § = 90° and (9, ¢) = (20°, 45°), and
the result is shown in Fig, 1 versus &= p/h. D, 9.4(p) was nor-
malized to C? %3, since only the shape of the curve in Fig. 1
is important for now. The novel result of Fig. 1isthat D, o ,(0)
is not a strict power law. It is often assumed (e.g., Ref. 9)
that o {C #, which yields the result that D_; (o) & P53 and
power functions are frequently used to describe the spatial
structure function. In most of the applications that follow,
p = h. The result of integrating Eq. (4) without restrictions on
the size of p relative to # demonstrates that the structure
function behaves as p%/° at small p and as p?/® at large p, and
changes continuously between those two limits. This impor-
tant result will surface repeatedly in calculations of rms
scatters and Allan variances, both of which are usually con-

sidered to be power functions of time, but in this picture
deviate from power law in a fashion analogous to the deviation
in Fig. 1.

Another feature of Fig. 1, which will be common to many
of the calculations which follow, is the elevation dependence
of the structure function, At small antenna separations, the
structure function is roughly proportional to the tropospheric
path length. We use the phrase “path length” to mean the
effective distance traveled by a wave from the top of the wet
troposphere to an antenna; it is approximately proportional to
(sin (elevation angle))™. As the distance p becomes many
times the wet troposphere height, the structure function
becomes proportional to the path length squared. Since the
structure function is an average squared delay difference, the
1ss delay difference between the two antennas will be approxi-
mately proportional to (path length)®5 for distances less than
the troposphere height and to (path length)!-? for distances
greater than the troposphere height. This result is consistent
with the intuitive picture that many small irregularities con-
tribute to the short distance structure while a small number of
larger irregularities dominate the large distance structure,

The second assumption of the fluctuation model outlined
here is that temporal fluctuations are caused by spatial fluctua-
tions which are moved past a site by the wind. The persistence
of this “frozen” spatial structure (Ref, 11) allows the calcula-
tion of temporal structure functions by replacing o = vT in
Eq. (4), where » is the wind speed and T is the time at which
the structure function is to be evaluated. In other words, the
temporal structure function

= -
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for a time interval T at a single station is equivalent to the
spatial structure function D, , »(p) between two antennas
separated by a distance p = T That is,

D,y 4(T) = D 5 (0,7 (%)

Thus, an interesting feature of Eq. (4) is that it describes
not only the differential fluctuations between two antennas
but the temporal fluctuations observed at a single antenna as
well, Temporal structure functions therefore have the same
curved shape as Fig. 1, and can be described by fitting a poly-
nomial to Fig. 1, as detailed in Appendix A. In Egs. (4) and
(5), ¢ is the angle between the direction of the wind and
the antenna line of sight projected on the surface of Earth,

Before discussing the effect of the above model assump-
tions and derivations on VLBI observables, it will be useful to
assign values to the three free parameters implicit in Egs. (4)




and (5): The effective wet troposphere height %, the wind
speed v, and the structure function constant C. Except as
noted, subsequent calculations assume A to be 2 km, which is
the approximate scale height of the wet troposphere. The
wind speed v is taken to be 8 m/s, representative of typical
winds at 1-km altitude at Goldstone, California. It will be
shown below that once / and v are specified, C can be calcu-
lated knowing the standard deviation of the zenith wet delay
over any given time interval. The standard deviation can be
determined either from VLBI estimates of the zenith param-
eter for individual experiments or from WVR data. To arrive at
a value of C which represents average Goldstone water vapor
conditions, we will use WVR data taken at the Mojave station
over a period of years. As noted below, C derived in this way is
1.99 X 10~7 m1/3,

lil. The Effect of Water Vapor Fluctuations
on VLBI Observables

The fluctuating water vapor refractivity will cause errors
in the delay and delay rate VLBI observables. In order to
assess the average magnitude of the delay error, the variance
of the water vapor delay fluctuation for arbitrary antenna
orientation will be written as a function of observation time
interval. We use the variance at zenith to calculate the struc-
ture function normalization constant C, The Allan standard
deviation of the fluctuations is then presented to indicate the
effect of the fluctuations on the delay rate observable. At the
end of this section, the observable elevation dependence for
selected time scales will be presented and compared to eleva-
tion signatures in the DSN VLBI data set.

The variance of the delay at a single station along the ray-
path with elevation 8 and a projected angle ¢ with respect to
the wind is given by

T

075 o(T) = (I/T)zf (T-)D,, ,(t)dt  (6)
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Equation (6) is derived in Appendix B. The constant C enters
in Eq. (6) through l—)ﬂe,q)(T) as in Eq. (5). Standard deviations
of WVR data taken at Goldstone over a several year period
show that 0, 0 (T)I =04 hours is 1.67 £0.73 cm of delay
(Ref. 12). The Goldstone result applied to Eq. (6) yields a
value of C=1.99 X 10-7 m~1/3, The standard deviation of
the zenith delay is shown versus time interval in Fig. 2 along
with the standard deviation for 8 =90° and (8, ¢)= (20°,
45°). Again, the model describes a curved rather than power
law shape. Over very small time intervals, the standard devia-
tion is proportional to T5/6; over very large intervals, it is
proportional to T'/3. The elevation dependence also exhibits

the same qualitative feature as it did for the square root of
the structure function calculated above.

The Allan variance is a relatively good approximation to the
delay rate variance and is therefore calculated in terms of the
structure function in Appendix B. The result is the simple
formula

4,54 = 4D, 4 (T)-D, , ,@QTHIQT?) ()

The Allan standard deviation, which is the square root of
Eq. (7), is shown in Fig. 3 for the same angle combinations as
in Figs.1 and 2. The curved spectrum which maps more
strongly with elevation at large time scales than at small is
evident again in the Allan standard deviation. The Allan
standard deviation is proportional to 76 at short time
intervals and 772/% at large time intervals. For reference, the
hydrogen maser Allan standard deviation is also shown in
Fig. 3.

To compare observable mode! predictions to VLBI data,
delay and delay rate elevation dependences for specified time
intervals are presented below. VLBI analysts are typically
concerned with delay fluctuations on the order of a few hours
if zenith delays are statistically estimated. In that case, fluc-
tuations on longer time scales are largely absorbed by tropo-
sphere parameters in the least squares solution. Plotted in
Fig. 4(a) is the calculated standard deviation of tropospheric
delay for a 3-h time period. The standard deviation is plotted
versus the path length in zenith units. The dashed line in
Fig. 4(a) shows the contribution of the mean thermal noise,
called system noise (Ref.3), for the DSN VLBI data set.
According to this figure, system noise on the average is a more
severe error source than that due to water vapor fluctuation.
The main conclusion from Fig. 4(a) is that if the pardmeteriza-
tion of the troposphere presented here is realistic, the delays
of the DSN data set are not currently dominated by the
dynamic wet troposphere.

Figure 4(b) shows the Allan standard deviation as calcu-
lated from the model for a typical DSN scan length time of
200s, versus the path length in zenith units, Because the
delay rate observables is the average rate of change of delay
over a 200-s scan length, the Allan standard deviation at that
time interval is close to the delay rate scatter. The dashed line
on Fig. 4(b) shows the estimated Allan standard deviation due
to instrumental phase instability as measured at DSS 13.?
Instrumental phase instability due to amplification and hetero-
dyning is believed to be the largest non-atmospheric error in

2Eclwards, C.D., IOM 335.4-473 to Tracking Systems and Applica-
tions Section, Jet Propulsion Laboratory, February 1985.




the delay rate measurement; for example, it is approximately
an order of magnitude larger than the error due to the hydro-
gen maser clock. According to the model, with the atmo-
spheric parameters of Section II, the delay rate observable
error, unlike the delay error, is dominated by the dynamic wet
troposphere.

To test the above conclusions, Figs. 5(a) and 5(b) show the
rss delay and delay rate residuals from the DSN VLBI data set
as a function of the sum of the path lengths for the raypaths
of an observation. The figures are based on 1978-1985 VLBI
data taken on the California-Spain and California-Australia
baselines. In agreement with the above model considerations,
the delay residuals of Fig. 5(a) show no trend with path
length. For the delay rates in Fig. 5(b), however, there is a
significant increase in rss residuals as the path length increases,

much like the model result of Fig. 4(b). The solid line repre-.

sents the curve in Fig. 4(b), increased 30% with an overall
scaling factor. The shape of the model curve is in agreement
with the VLBI data. The underestimation of the normaliza-
tion of the model curve by 30% is in part due to uncertainties
in normalization parameters and in part to the tendency of
the Allan standard deviation to underestimate the delay rate
scatter. In the future, we plan to calculate the delay rate
temporal standard deviation, which could be directly com-
pared with the data and perhaps alleviate the need for most
of the 30% scaling factor. Comparing Figs. 4 and 5 shows that
the calculated levels of wet tropospheric disturbance are in
approximate agreement with the levels observed in the DSN
VLBI data set. In the case of the delay rate observable, the cal-
culated path length dependence is also consistent with the
data.

It should also be noted from Fig. S(a) that if the DSN
noise levels can be reduced below 1-2 cm per observation,
the VLBI errors will be dominated in both delay and delay
rate by the fluctuating wet troposphere. Dry tropospheric
inhomogeneities may also become important. When, for
example, DSS 13 is instrumented with a Mark III data acquisi-
tion system in the next year, 1-2 cm noise levels should be
attainable on most sources. Because of the magnitude of the
delay and delay rate tropospheric effects indicated by Figs. 4
and 5, the delay rate observable is usually down-weighted
relative to the delay in VLBI analysis. Since the delay observ-
able is therefore much more important in the parameter
estimation procedure than the delay rate, the lower noise
levels available with improved instrumentation will allow a
more thorough empirical study of tropospheric effects on the
entire VLBI solution.

In the model calculations in this section, the wet tropo-
sphere effective height %, wind speed v, and normalization
constant C were assigned the values given at the end of Sec-

tion I1. Below we give the dependence of the delay and Allan
standard deviations (Egs. 6 and 7) on 4, v, and C. Numerical
analyses of Eqs. (4), (6), and (7) imply that the delay standard
deviation is proportional to Chv!/3 for T ) 250 s. The Allan
standard deviation at 200-s time intervals is proportional
to Ch97 p06, These approximate relations can be used to
coarsely gauge the dependence of the statistical quantities on
the properties of the frozen-in wet troposphere.

IV. The Effect of Water Vapor Fluctuations
on VLBI Parameter Estimates

The effect of the dynamic wet troposphere on the delay
and delay rate observables ultimately corrupts the determi-
nation of geometric parameters in the VLBI estimation proce-
dure. As mentioned in the introduction, the geometric param-
eters of baseline and source position define the radio reference
frame relative to which spacecraft are navigated. The model
presented in previous sections leads to a calculation of the
covariance of any two parameters due to the dynamic wet
troposphere. Along with the aforementioned model param-
eters, such as wind speed and the overall normalizing constant,
the particular VLBI observing schedule is needed.

In VLBI, parameters are usually estimated by a linear least
squares procedure. The parameter estimates to be discussed are
actually corrections to @ priori values. These estimates can be
expressed as linear functions of the delay and delay rate
observables. They will be expressed below as a function of the
delay observable only, because the delay observable dominates
the VLBI solution. In the least squares analysis, the ith param-
eter P, is calculated as a linear combination of the observables.
It is given by

2 =; Fi,k(TZIc—le) ®

where F, are the observing schedule dependent coefficients
generated by the least squares process which multiply the kth
observable in the summation for the ith parameter. The 7, s
are the delays experienced by the wave arriving at the mth sta-
tion for the kth observation. In this treatment, the statistical
variation of the 'rm'k’s are assumed to be due only to the
dynamic wet troposphere. From Eq. (8) follows the expres-
sion for the parameter covariance between the ith and the
jth parameters.

(B =(P) B ={F)) = Zk: ZlFikFiz
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where
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coV(T, 1> Tp) = (T

It has been assumed in Eq. (9) that the stations are far enough
apart that their tropospheres are uncorrelated. The brackets
refer to the same ensemble average as in Eq. (1), where each
ensemble member consists of a value of the randomly varying
refractivity for each point in space.

The frozen-in statistical model described above allows for
the calculation of the covariance of Eq. (10). Substituting the
expression in Appendix A, Eq. (A-1), into Eq. (10) and using
the relation Eq. (A-3), yields the result

cov(r, ,7,) = (1/sin 8, ) (1/sin 6,) [hz o2

! n o ah - N
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where the station index has been suppressed and o’f is the
variance of wet refractivity fluctuations. It is given by

= (n(TR - (n(t)? 12)

where the n(—r)) and D, (r) functions are as in Eq. (2), and
6, and 8; are the eleva;t+10n angles for the kth and {th observa-
tions. {n(r)>and {n(r)?) are independent of T in the homo-
geneous picture of the atmosphere. The times S U and g gprre-
spond to the kth and /th observations, and rk(z) and r,(z")
‘describe the point in space associated with the kth and Ith
lines of sight at heights z and z’, respectively. The wind velo-
city in Eq. (11) is assumed to be independent of scan number.
Within the framework of this model, Eq. (11) is the covariance
of the wet tropospheric delay for observations along any two
rays separated by arbitrary times.

Substituting Eq.(11) into Eq. (10) and Eq.(10) into Eq. (9)
yields the complete expression for the VLBI parameter covari-
ances. We write it below with the modification that the actual
curvature of Earth be considered in describing the mapping of
a zenith path length to arbitrary elevation angles (Ref. 13):

- 2 2
cov Ij,f}) = Z ZF Fﬂ[mk mh* o,
]
my k)
-(2sin 6, sin6)" f f dz dz Dn(s)]
0 0

2= (zcoth, cos¢, -z cotB, cos - vt ~1)?

where

+(z cot 8, sin ¢, -z’ cot B, sin ¢,)* + (z - 2')°
(13)

where m, and m, are the actual mapping from zenith to the
lines of sight at 6, and @,, respectively. h;c is hm, sin 6, and
h; is 2 m, sin 6,. The wind vector is along the x axis and ¢, and
¢, are the azimuths of the kth and /th scan relative to the wind

vector direction.

Before giving a sample parameter covariance result, it is
important to clarify the meaning of the ayf term in Egs. (11),
(12), and (13). To get a finite ensemble averaged value for
03, the troposphere must be completely uncorrelated at
points infinitely distant from each other. Then

= (1/2) D, (=) (14)
from the definition of the structure function in Eq. (1) and
the assumption of homogeneity. The structure function of
Eq. (2) does not converge at infinity, and this unphysical
feature of the Kolmogorov structure function must be altered.
A phenomenological function must be used which takes the
form of Eq. (2) for small distances and converges to a constant
at r = oo, We choose the modified structure function to be

D,R) = C* R*P|[(1+ R[L)*P] (15)
where L is a saturation scale length. L is chosen to be 2000 km
to be in approximate agreement with Ref. 11. This value of L
also produces reasonable very long term rms tropospheric
variations of about 3.5 cm, consistent with the total tropo-
spheric fluctuation over many months at mid-latitudes. In
actual calculations, D, (R) must be substituted into Eq. (13) in
place of D, (R) to calculate parameter covariances. It will be
demonstrated below that the actual covariances calculated for
geometric parameters are very insensitive to the choice of L,
provided L is in a physically reasonable range.

Figure 6 shows the baseline length error as calculated by
Eqgs. (13), (14), and (15) as a function of time over which
troposphere zenith parameters are estimated in the VLBI
analysis. The experiment was conducted in May 1983 on the




California~Australia baseline. Two different sets of constants
were used in the plot with the constraint that the daily zenith
delay standard deviation be 1.67 cm. As noted, the wind speed
was assumed to be 8 and 2 m/s. In each case the daily zenith
constraint was met by adjusting C to the value of 1,99 X 107
and 3.19 X 1077, respectively. Figure 6 shows by the similarity
of the two curves that the baseline length covariances calcu-
lated are sensitive mainly to the zenith standard deviation.
The covariances shown in Fig. 6 are insensitive to changing the
more uncertain parameters of troposphere height, refractivity
structure function normalization, or the wind speed. A similar
statement can be made about the choice of the scale distance
L. To test the length error sensitivity to 4, & was changed from
2 km to 1 km and L varied between 3000 km to 1000 km; no
appreciable change in the length error calculation resulted in
either case.

Figure 6 also allows the determination of the optimal
number of troposphere parameters for a given VLBI schedule.
The figure shows that baseline length errors for the experi-
ment. considered can be reduced from the 5-cm to the 3-cm
range if the length of time for the zenith solution is less than
approximately 4 h. Estimating the zenith more frequently
than every 2 h, however, does not reduce the length error
much below the 3.5-cm level. Figure 6 is only an example of
how the model presented here can be used to calculate VLBI
parameter errors. The estimate of baseline length errors
varies with observing schedule as well as with the troposphere
fluctuation normalization, which can be approximated from
the fluctuation of the VLBI estimated troposphere parameters.

Equations (11) through (15) also suggest a possible refine-
ment to the VLBI parameter estimation procedure, Most
VLBI estimation schemes currently in use do not allow for a
correlation between observations, because system noise is in
principle uncorgelated from time to time. But the troposphere
noise is correlated, as is evidenced, for example, by the shape
of the delay standard deviation calculated in Section III. If
the model outlined provides a sufficiently accurate descrip-
tion of the troposphere-induced delays, then Eq. (11) evaluated
with D; as given in Eq. (15) can be used in the least squares
analysis. This expression for the observable covariance could
be used in the observable covariance matrix in the VLBI
parameter estimation routines. Work is in progress at JPL to
modify the MASTERFIT parameter estimation software to
include these off-diagonal elements in the covariance matrix.
At present, it is not known whether the inclusion of the tro-
posphere covariance will be adopted as a standard procedure
because of the large computer resources needed to compute
the covariance of Eq. (11). We will either include the results
of calculations based on Eq. (11} or simply calculate the
parameter errors caused by the troposphere in the current
estimation scheme using Eq. (13) with D/ .

V. Model Validation

The above model description rests on the two aforemen-
tioned physically appealing but simplified assumptions about
frozen-in turbulence. Here we compare the salient results of
the model to published results. Comparisons between model
calculations and spatial structure function results are followed
by comparisons with Allan standard deviations and power
spectra. At the end of this section, the question of the altitude
independence of C and the wind vector is discussed.

Spatial structure functions DT’G'(,,(p) were measured by
Armstrong and Sramek (Ref. 14) at the Very Large Array.
For each p, @ and ¢ were averaged over many observations.
Armstrong and Sramek fit their structure functions to power
laws and found powers between 0.84 and 1.95 with an average
of 1.4. Plotted in Fig. 7 are the exponents from local power
law fits to the calculated structure functions of Fig. 1, as a
function of a. Assuming a troposphere height of 2 km and
taking the average p of Ref. 14 to be about 3 km yields an
expected average exponent between 0.95 and 1.35 correspond-
ing to the zenith and 20-deg elevation prediction from the
model. The exact model value depends on the elevation angle
spread of the actual experiment. Thus, the model qualitatively
agrees with the data, slightly underestimating the measured
slope. There is some indication in the figures of Ref. 14 that
the structure function does curve at large p, but the evidence is
not conclusive.

In Ref. 11, Dravskikh and Finkelstein describe a structure
function which conforms to the atmospheric data they have
studied. They state that the data are consistent with a struc-
ture function made up of two power laws. The function is
proportional to p%/3 for spatial scales less than 5.6 km, and
proportional to 0213 for scales larger than 5.6 km. The asymp-
totic power law exponents agree with our model calculation.
For a troposphere height of 2 km, the point where the power
laws change would be at « = 2.8. Such a change could easily be
imagined to take place at this value of « in Fig. 1, if one were
trying to fit the model result of Fig. 1 to a two-component
power law. Although the agreement with our model is very
good, it should be noted that Dravskikh and Finkelstein do
not clearly describe the origin of either their data or their
model assumptions.

The Allan standard deviation of VLBI phase fluctuations,
presumably due to the wet troposphere, AT,@, (T), was mea-
sured by Rogers et al. in Ref. 15. It is of the same order of
magnitude as that shown in Fig. 3, but, more importantly,
it is clearly curved. The curvature is not as extreme as the
model predicts. This could be in part due to system noise
contributions to the Allan standard deviation at very short
time scales as well as to inadequacies in the above model.




Tropospheric temporal power spectra measured with a
WVR by Hogg et al. (Ref. 16) exhibit nearly power law
behavior with an exponent of roughly 1.75, corresponding to
an Allan standard deviation slope of -0.625 (see Ref. 9 and
Eq. 7). This is close to the model prediction behavior for

long time scales, but there is no evidence of the curved shape
predicted by the model at short time scales. Again, either
instrumental noise or inadequacies in the above model could
be responsible for the discrepancies between the model and
the published data.

Power spectra measured by Thompson et al. (Ref. 17) show
more of a curved shape as expected from the above discussion.
At high frequencies near 0.1 Hz, the power law exponent for
the power spectrum shown is near -2.86. Near the low fre-
quency of 0.01 Hz, the exponent is approximately -1.92.
These two slopes correspond to short- and long-term Allan
standard deviation slopes of -0.07 and -0.54, respectively, in
qualitative agreement with model predictions.

A summary of the power law exponents from model predic-
tions and data is presented for the discussed statistical quan-
tities in Table 1. The table shows a list of statistical quantities
in the first column and the mathematical expression used in
the text in the second. The third column shows the exponent
of the independent variable describing local power law fits for
small and large scales of the variable, connected by an arrow.
For distance, small means much less than the water vapor
scale height (~2km). Large scales mean distances much
greater than the scale height. Small and large time scales
correspond to the small and large distance scales divided by
the average wind speed. The fourth column shows the power
laws determined from measurements, with small and large
scales noted as before, if available from the data. The fifth
column shows the reference for the data quoted in the fourth
column.

Investigations of the range of validity of the above calcula-
tions will have to address the validity of the homogeneity
ascribed to the constant C and the wind vector. Measurements
of C (Ref. 18) show varying altitude dependencies. The
insensitivity to the effective height 4 discussed in Section IV
and calculations with an exponentially decreasing C suggest the
adequacy of the slab model used in this article for most
applications. Data on the wind vector (Ref. 19) also show a
variety of altitude dependences. Again, some average wind
speed present over an average height may suffice, but this must
be investigated, In the worst case, the equations for the wet
tropospheric effects on observables and parameters could be
modified to include altitude dependences for C and the wind
speed, at the cost of calculational complexity.

The model qualitatively agrees with the references cited;
however, more experiments are needed to really test the
limitations of the model. To that end, we have conducted a set
of WVR experiments with simultaneous wind vector monitor-
ing at Goldstone. The data are currently being analyzed and
will be reported in the near future.

VI. Conclusions and Discussion

The description of water vapor fluctuations based on frozen-
in Kolmogorov turbulence leads to estimates of the effect of
the dynamic wet troposphere on VLBI observables and param-
eters. Based on this description, one finds that the current DSN
VLBI data set errors are troposphere-dominated for delay rates
only. Since parameters are largely determined by the delay
observables, formal errors in the 1978-1985 DSN VLBI data
set do not have to be substantially modified to account for the
dynamic wet troposphere.

Estimated parameter covariances were derived within the
framework of the statistical model. A sample calculation of
baseline length errors for one of the DSN California-Australia
experiments showed the capability of repeated zenith param-
eter estimation to reduce baseline length error. The example
showed that, under typical observing conditions, troposphere-
induced baseline length error could be reduced from 5 cm to
3 cm as the estimation time for zenith delay was decrased.

All estimates of observable and parameter effects in this
article are dependent upon normalization to the Goldstone
WVR data, as mentioned in Section III. The spread of the
measured daily zenith standard deviations mentioned in
Section III is about 40% of the nominal 1.67 cm used through-
out the article. This is a good indication of how much quoted
numbers can vary over time at a particular site. As has been
mentioned, it may be possible to use VLBI or WVR data to
obtain zenith standard deviations and normalize the statistics
for individual experiments. The reliability of that procedure is
being checked with the recent WVR data taken at Goldstone.

Qur future efforts include the analysis of several WVR
experiments performed in the last few months, which should
help to resolve the limitations of the model. These experi-
ments should also prove useful in assessing the character of
the noise contribution of the WVR instruments. The practical
benefits of putting the calculated troposphere covariance into
the JPL VLBI parameter estimation scheme will be studied
with a test version of MASTERFIT. VLBI data will then be
processed with the troposphere covariance and the results
compared to processing with WVR measurements.
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Table 1.

Comparison of behavior of calculated and measured tropospheric statistics

Expression from

Power law exponent

Statistic This Reference
text model Data for data
Spatial
D.p o (0) 1.4 Ref. 14
structure 7,0,¢ 5/3-2/3
function Eq. (4) 5/3-+2/3 Ref. 11
Temporal >
structure Dro.0 D 5/3-2/3 - -——
function Eq. (5)
Standard
deviation of 0E9,¢6(T) 5/6—1/3 - -
zenith display q. (6)
Allan -0.25--0.50 Ref, 15
WA
standard Efﬂﬂ; D - 1/6+-2/3 - 0.63 Ref. 16
deviation a. (7 - 0.07>-0.54 Ref. 17
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Fig. 1. The spatial structure function, calculated from Eq.(4)
normalized to C2h®/3, as a function of « = p/h, where p is the dis-
tance between two points on Earth at which the wave is received,
and h is the effective height of the wet troposphere. Curves are
shown for (6,¢) = (90°,0°) and (6,¢) = (20°,45°).
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Fig. 2. The single-site, calculated standard deviation of the delay
fluctuation as a function of time interval. The standard deviation is
shown for zenith and 20-deg elevation. Refractivity structure func-
tion normalization, wet troposphere height, and wind speed are as
noted at the end of Section Il.
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Fig. 4(a). The calculated delay standard deviation at a 3-h time
interval as a function of total path length for two raypaths through
the atmosphere for a VLBI observation. The dashed line Is the mean
system noise for the 1978—1985 DSN VLBI data set.
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Fig. 4(b). The calculated delay Allan standard deviatlon at a 200-s
time interval as a function of path length for two raypaths for a VLBI
observation. The dashed line is an estimate of the current instru-
mental instability as measured at DSS 13.
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Fig. 5(a). The rms delay residual from the 1978—1985 DSN VLBI data
set, for intercontinental observations only, versus path length
through the atmosphere.
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Fig. 5(b). The rms delay rate residual from the 19781985 DSN VLBI
data set, for intercontinental observations only, versus path length
through the atmosphere. The solid curve is the model prediction of
Fig. 4(b) increased by 30%.
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deviation was taken to be 1.67 cm.
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Appendix A

The Spatial Structure Function

The spatial structure function for the delay of waves propa-
gating through the atmosphere to Earth is defined by Eq. (3).
In order to derive the result of Eq. (4) for arbitrary lines of
sight separated by a distance p, Earth will be considered flat.
This will result in less than a 5% error at 6-deg elevation. Let
T, d,(x) be the tropospheric delay experlenced by a wave
incident at a point on the Earth’s surface X . The wave arrives
along the line of sight with elevation 6 and azimuth ¢.

-

Assuming geometric optics holds, 're’,p(x ) can be expressed
as an integral of the refractivity along the raypath, as in
Section II,

h
Ty 5 (X) = (l/sine)f n(X +76,6,2)) dz (A1)
’ 0

where n(x + r(@ ¢, z)) is the refractmty evaluated at height
z along the raypath originating at X and extending along the
vector T with elevation and azimuth of  and ¢. The spatial
structure function is

D7’9'¢ (P) ( ¢(X + p) (X ))2 (A'z)

To calculate the structure function of Eq. (4), the followmg
relation is used_) For any two arbitrary vectors x1 and xz,
where 7 = le - %, |,

2(n?)-2(n(x,) n(x,))
(A-3)

> >
D, (" = D,(X,.%,) =

Equation (A-3) follows from the definition of the structure
function and the assumption mentioned in the text that the
structure function of »n depends only on the magnitude of the
vector difference of its arguments. This assumption also
implies that {#n? ) is independent of spatial coordinates. Sub-
stituting Eq. (A-1) into Eq. (A-2) and using Eq. (A-3) yields
Eq. (4) in the text.

Since most of the quantities calculated in this article depend
on the form of the spatial structure function of Fig. 1, param-
eters describing a polynomial fit to the curve of Fig. 1 are
shown in Table A-1. The parameterization is as follows:

Z a, (log )

log D, 0 ¢(a) (A-4)

where a = p/h and D, 4 , () has been normalized to C2 813,
The a, parameters are given in Table A-1.
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Table A-1. Parameters from fit to numerical integration of spatial
structure function

Parameter Theta =90 Theta = 20
0 -0.22318D+00 0.43292D+00
1 0.10108D+01 0.13450D+01
2 -~0.22470D+00 -0.23695D+00
3 0.25715D-01 -0.85416D-01
4 0.32032D-01 0.30830D-01
5 -0.44802D-02 0.26228D-01
6 ~0.47644D-02 -0.35145D-02
7 0.43030D-03 -0.39578D-02
8 0.40255D-03 0.11101D-03
9 -0.16176D-04 0.22698D-03

10 -0.13693D-04 0.95718D~04




Appendix B

Calculating Standard Deviations and Allan Variances
From Structure Functions

Consider a random function of time f(#). The variance of
f(t) over a time T'is '

T T
@ = [ arer-am [ s
0 0
(B-1)
By squaring the indicated bracketed quantity in Eq. (B-1) and
using the relation in Eq. (A-3), one arrives at the following
expression:
' T T
oj? (D = (1/T2)f f Df(t,z")/2 drdt'  (B-2)
o Jo

Assuming, as always, that D(¢, t')= Dy(lt - t'1) allows the
simplification of Eq. (B-2) as follows:

T
a;(T) = (1/T2)f (T - 1) D(r)dr (B-3)
0

as in Eq. (6).

To calculate the Allan variance, start from the following
form of the definition of the Allan variance for the random
delay function f(¢):

AT) = e+ T)=F (1) - (f@ - F (1 - THI*) 272
(B-4)
where ¢ is an arbitrary time. Squaring the indicated quantity
in Eq. (B-4) and applying the relation in Eq. (A-3) to the

random function f yields a result analogous to Eq. (7) in the
text.
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